Research Theme 2: Heterointegration

Research Theme 2: Heterointegration

Research Theme 2 (RT-2) includes teams that are taking the new materials synthesized in RT-1 and using sophisticated equipment and techniques to place and pattern them with exquisite levels of precision, enabling the building of new device architectures.

The different approaches being brought together in RT-2 are enabling the scalable integration of colloidal quantum dots into device structures. If we are to build new optoelectronic technologies and applications, we need to have reliable, scalable, and accurate techniques to integrate the hew materials made by RT-1 into existing or new electronic device structures. This enables architectures for linear, non-linear, and quantum optoelectronic devices.

Once these new materials have been integrated into device architectures members of the RT-2 team investigate how these new materials interact with the surroundings, exploring the behavior of the excitons, spins, and charges in across the interfaces of the new materials. This can help the investigators better understand and optimize the materials.

RT-2’s collaborations with RT-1 inform the design new materials that are optimized for accurate placement. RT-2’s collaborations with RT-3 inform the properties of the device and develop new placements and patterns of materials based on their properties.

Find out more about the IMOD members participating in RT-2 research, and check out some of the recent RT-2 publications.

RT-2 Research Groups

No results found.

Recent RT-2 Publications

Interpreting Halide Perovskite Semiconductor Photoluminescence Kinetics

Interpreting Halide Perovskite Semiconductor Photoluminescence Kinetics

ACS ENERGY LETTERS, 2024, 9, 2508-2516

https://doi.org/10.1021/acsenergylett.4c00614

Nanolaser Using Colloidal Quantum Wells Deterministically Integrated on a Nanocavity

Nanolaser Using Colloidal Quantum Wells Deterministically Integrated on a Nanocavity

ACS PHOTONICS, 2024, 11, 6, 2465-2470

https://doi.org/10.1021/acsphotonics.4c00377

Electrohydrodynamic Printing-Based Heterointegration of Quantum Dots on Suspended Nanophotonic Cavities

Electrohydrodynamic Printing-Based Heterointegration of Quantum Dots on Suspended Nanophotonic Cavities

ADVANCED MATERIALS TECHNOLOGIES, 2024, 2301921

https://doi.org/10.1002/admt.202301921

Purcell Enhanced Emission and Saturable Absorption of Cavity-Coupled CsPbBr3 Quantum Dots

Purcell Enhanced Emission and Saturable Absorption of Cavity-Coupled CsPbBr3 Quantum Dots

ACS PHOTONICS, 2024, 11, 4, 1638-1644

https://doi.org/10.1021/acsphotonics.3c01847

Nonlocal, Flat-Band Meta-Optics for Monolithic, High-Efficiency, Compact Photodetectors

Nonlocal, Flat-Band Meta-Optics for Monolithic, High-Efficiency, Compact Photodetectors

NANO LETTERS, 2024, 24, 10, 3150-3156

https://doi.org/10.1021/acs.nanolett.3c05139

Exciton-carrier coupling in a metal halide perovskite nanocrystal assembly probed by two-dimensional coherent spectroscopy

Exciton-carrier coupling in a metal halide perovskite nanocrystal assembly probed by two-dimensional coherent spectroscopy

JOURNAL OF PHYSICS: MATERIALS, 2024, 7, 2, 025002

https://doi.org/10.1088/2515-7639/ad229a

Dynamic Nanocrystal Superlattices with Thermally Triggerable Lubricating Ligands

Dynamic Nanocrystal Superlattices with Thermally Triggerable Lubricating Ligands

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146, 6, 3785-3795

https://doi.org/10.1021/jacs.3c10706

Exciton Bimolecular Annihilation Dynamics in Push-Pull Semiconductor Polymers

Exciton Bimolecular Annihilation Dynamics in Push-Pull Semiconductor Polymers

THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15, 1, 272-280

https://doi.org/10.1021/acs.jpclett.3c03094

Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance

Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance

NATURE MATERIALS, 2024, 23, 88-94

https://doi.org/10.1038/s41563-023-01723-w

Many-Exciton Quantum Dynamics in a Ruddlesden–Popper Tin Iodide

Many-Exciton Quantum Dynamics in a Ruddlesden–Popper Tin Iodide

JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127, 43, 21194-21203

https://doi.org/10.1021/acs.jpcc.3c04896

Topological Edge Mode Tapering

Topological Edge Mode Tapering

ACS PHOTONICS, 2023, 10, 10, 3502-3507

https://doi.org/10.1021/acsphotonics.3c00463

Cryo-Compatible In Situ Strain Tuning of 2D Material-Integrated Nanocavity

Cryo-Compatible In Situ Strain Tuning of 2D Material-Integrated Nanocavity

ACS PHOTONICS, 2023, 10, 9, 3242-3247

https://doi.org/10.1021/acsphotonics.3c00662