Research Theme 1:
Precision Synthesis
Research Theme 1: Precision Synthesis
Research Theme 1 (RT-1) includes the teams that are developing new chemical reactions to synthesize the building blocks that make up the next generation of optoelectronic devices.
Transforming optical technologies with colloidal quantum dots begins with synthesizing novel materials that have superior performance and can be easily handled and incorporated into devices and applications. Members of RT-1 are advancing the fundamental science underpinning colloidal semiconductors.
Combining multi-level theory and experimentation the team engaged in RT-1 are innovating techniques to control the precision synthesis of colloidal materials and their surfaces to produce quantum dots with advanced combinations of color purity (linewidth), stability, brightness, and processability from ensembles down to single dot precision.
RT-1’s collaboration with RT-2 revolves around the design of new materials that enable accurate and reliable placement of the new materials in device architectures. RT-1’s collaboration with RT-3 uses the feedback from device engineers to innovate on new materials that have properties desired in new device structures.
Find out more about the IMOD members participating in RT-1 research, and check out some of the recent RT-1 publications.

Recent RT-1 Publications

Ligand Equilibrium Influences Photoluminescence Blinking in CsPbBr3: A Change Point Analysis of Widefield Imaging Data
ACS NANO, 2024, 18, 29, 19208-19219
https://doi.org/10.1021/acsnano.4c04968

Nanodiamond Emulsions for Enhanced Quantum Sensing and Click-Chemistry Conjugation
ACS APPLIED NANO MATERIALS, 2024, 7, 13, 15334-15343
https://doi.org/10.1021/acsanm.4c01699

Bromine Incorporation Affects Phase Transformations and Thermal Stability of Lead Halide Perovskites
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146, 27, 18576-18585
https://doi.org/10.1021/jacs.4c04508

Tailoring Interface Energies via Phosphonic Acids to Grow and Stabilize Cubic FAPbI3 Deposited by Thermal Evaporation
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146, 27, 18459-18469
https://doi.org/10.1021/jacs.4c03911

Chemically Driven Sintering of Colloidal Cu Nanocrystals for Multiscale Electronic and Optical Devices
ACS NANO, 2024, 18, 27, 17611-17621
https://doi.org/10.1021/acsnano.4c02007

Machine Learning for Perovskite Solar Cells: An Open-Source Pipeline
ADVANCED PHYSICS RESEARCH, 2024, 2400060
https://doi.org/10.1002/apxr.202400060