RT-2:Heterointegration and Devices
The Heterointegration and Devices Team will address the integration of these nanomaterials with metals, insulators, and other semiconductors, and placing them precisely in their environment to generate materials with collective emergent functionality.
Team
Cherie Kagan (Theme Lead)
J. Devin Mackenzie
Lee Bassett
Juan-Pablo Correa Baena
David Ginger
Elsa Reichmanis
Andrew Rappe
Giulia Galli
Dmitri Talapin
Recent RT-2 Publications
Increased Brightness and Reduced Efficiency Droop in Perovskite Quantum Dot Light-Emitting Diodes Using Carbazole-Based Phosphonic Acid Interface Modifiers
ACS NANO, 2005, ASAP
https://doi.org/10.1021/acsnano.4c13036
Chiral flat-band optical cavity with atomically thin mirrors
SCIENCE ADVANCES, 2024, 10, 51, eadr5904
https://doi.org/10.1126/sciadv.adr5904
Quadrupolar Resonance Spectroscopy of Individual Nuclei Using a Room-Temperature Quantum Sensor
NANO LETTERS, 2024, ASAP
https://doi.org/10.1021/acs.nanolett.4c04112
Million-Q free space meta-optical resonator at near-visible wavelengths
NATURE COMMUNICATIONS, 2024, 15, 10341
https://doi.org/10.1038/s41467-024-54775-0
A tale of two transfers: characterizing polydimethylsiloxane viscoelastic stamping and heated poly bis-A carbonate transfer of hexagonal boron nitride
MICRON, 2025, 189, 103747
https://doi.org/10.1016/j.micron.2024.103747
Anomalous Behavior in Dark–Bright Splitting Impacts the Biexciton Binding Energy in (BA)2(MA)n−1PbnBr3n+1 (n = 1–3)
ACS NANO, 2024, 18, 40, 27793-27803
https://doi.org/10.1021/acsnano.4c11523
Colossal Core/Shell CdSe/CdS Quantum Dot Emitters
ACS NANO, 2024, 18, 31, 20726-20739
https://doi.org/10.1021/acsnano.4c06961
Surface-binding molecular multipods strengthen the halide perovskite lattice and boost luminescence
NATURE COMMUNICATIONS, 2024, 15, 6245
https://doi.org/10.1038/s41467-024-49751-7
Ligand Equilibrium Influences Photoluminescence Blinking in CsPbBr3: A Change Point Analysis of Widefield Imaging Data
ACS NANO, 2024, 18, 29, 19208-19219
https://doi.org/10.1021/acsnano.4c04968
Chemically Driven Sintering of Colloidal Cu Nanocrystals for Multiscale Electronic and Optical Devices
ACS NANO, 2024, 18, 27, 17611-17621
https://doi.org/10.1021/acsnano.4c02007
Exciton–photocarrier interference in mixed lead-halide-perovskite nanocrystals
THE JOURNAL OF CHEMICAL PHYSICS, 2024, 221101
https://doi.org/10.1063/5.0203982
Interpreting Halide Perovskite Semiconductor Photoluminescence Kinetics
ACS ENERGY LETTERS, 2024, 9, 2508-2516
https://doi.org/10.1021/acsenergylett.4c00614